Dynamic aspects of Python

Martin Matusiak

Software Technology Colloquium Talk / 10.04.08

Python facts

Created by Guido van Rossum (remains benevolent dictator)
Dynamically typed language
No compilation step
Variables are not declared before use
Mature language (1991-)
Canonical implementation: CPython

Runs on more platforms than Java

AlX, BeOS, iPod, OS/2, Palm OS, Playstation/PSP, Psion, QNX, Sharp
Zaurus, Sparc, VMS, VxWorks, WindowsCE/PocketPC

also on the Java VM and the .NET VM

Today's program

Python primer
Objects and classes
Metaprogramming

Waypoint

Python primer

Everything is an object

No primitive datatypes

num = 4 # the number 4 is an object
num.<tab>

> num. abs

> num. add

> num. class

Objects have
a class
obj. <class
a hamespace

obj. dict
methods

obj. str # the object's string representation
members

obj. doc

Variables are labels

obj = object() # instantiate object from 'object' class,
bind to the label 'obj'

obj2 = obj # bind a new name 'obj2' to existing object bound to
'obj’

obj == obj2 # object identity test

> True # same object

Iterable datatypes

Lists
a =[1, "name"]
Tuples
b = (1, "name")
Same properties as lists, but immutable
Dictionaries
c = {"name": "James", 42: "fourtytwo" }
Common properties
Members of each structure can be arbitrary objects
All are iterable and support

for item in structure: # iteration over members
print item
if item in structure: # membership test

print item
Used _all over_ Python

Define a function 'fun' taking two arguments

def fun(a, b):
return a+b
Call the function

fun(1l, 2)
> 3

Evaluate the function without calling it

fun

> <function fun at 0x2ad638bf3e60>
Investigate the function object

fun.<tab>

> fun. call
fun. call (1, 2)
> 3

call method is what makes it callable
same as fun(1l, 2)

def fun(a, b):
return a+b

Significant whitespace

Makes Python code very comprehensible

Higher signal-to-noise :)

Duck typing

"if it walks like a duck and quacks like a duck, it must be a duck”

fun(1, "2")

> <type 'exceptions.TypeError'>: unsupported operand type(s) for +:

‘int' and 'str'
but both 1 and "2” have an
num = 1; s = "2"
num. add (s)
> NotImplemented
s. add (num)

add method:

> <type 'exceptions.TypeError'>: cannot concatenate 'str' and 'int'

objects

Namespaces

Global namespace

Assignments outside a function or class update the global namespace

‘new symbol' in globals() # globals() returns a dictionary of the
global namespace

> False

new symbol = 14
globals()['new symbol']
> 14

The global namespace is global to the current module
Builtin namespace (immutable)

Contains objects available at any time, eg. 'int’
Global namespace shadows the builtin namespace

int # 'int' 1s bound in the builtin namespace

> <type 'int'>

int =1 # binding the name 'int' in global namespace
int

> 1

10

Namespaces

Local namespace

Assignments inside blocks are made in the local namespace
def fun():

print '‘new symbol' in locals() # equivalent to globals()

new symbol = 14

print locals()['new symbol']

fun()
> False
> 14
Global symbols can also be reached from functions using 'global’
def fun():
global new symbol # now refers to the outer scope

new symbol = 14

fun()
new symbol
> 14

11

Python code is stored in modules (.py files)

Modules are executed top-down

import re # import regular expression namespace from re.py
under the name 're'

modules are objects...

re. class
> <type 'module’'>
dir(re) # list the contents of an object

> re.compile
> re.findall
> re.match

Namespaces can also be merged on import
from re import *

Existing bindings for '‘compile’, 'findall' etc will be overwritten

12

Waypoint

Objects and Classes

13

The very first class definition

Deriving from the 'object’ class
class MyClass(object):

shared among all instances of this class
class member = "member of a class"

def init (self):
unique for every instance
self.instance member = "member of an instance"

def fun(self, s):
return s+self.instance member

14

Investigating instances

Creating an instance of the class 'MyClass'
obj = MyClass()
"every object belongs to a class...”
obj. «class
> <class ' main_ .MyClass'>
what about the members?
obj.instance member
> 'member of an instance’
obj.class member
> 'member of a class'
and the methods?
obj.fun("hi, ")
> 'hi, member of an instance'

15

Investigating instances

"every object has a namespace...”

obj. dict
> {'instance member': 'member of an instance'}

The 'class_member' variable is not present, it belongs to the class
Likewise the methods of the object

The namespace is a mapping from names to objects

It is mutable
obj.instance member new = 'new member of an instance'
obj. dict
> {'instance member': 'member of an instance',
> 'instance member new': 'new member of an instance'}

Attribute access amounts to retrieving the attribute from the namespace
This identity holds:

obj. dict ['instance member new'] == obj.instance member new
> True

16

Investigating classes

Classes are objects, objects belong to a class

MyClass. <class
> <type 'type’'>

'type' is the top most type in Python

Classes have a tuple listing their base classes

MyClass. bases
> (<type 'object'>,)

What about the namespace?

MyClass. dict .items()

> [("fun', <function fun at 0x2ad638bf7aal>),
('class member', 'member of a class'),

(' init ', <function 1init at 0x2ad638bf7b18>)]

we have our 'missing' class member
and the methods of our class
as usual, this namespace too is writable

17

Functions as methods

How a function becomes a method

class MyClass(object):
def init (self):
self.value =1

def foo(self, n):
return n+self.value

'foo' is now stored in the class namespace

MyClass. foo
> <unbound method MyClass.foo>

'unbound' means it is not bound to any _instance_ of the class

it cannot be called directly from the class

MyClass.foo(1)

> unbound method foo() must be called with MyClass instance as first
argument (got int instance instead)

18

Functions as methods

obj = MyClass()
from the point of view of an instance, the method is bound

obj.foo
> <bound method MyClass.foo of <MyClass object at 0x2ac49af64d90>>

and is callable

obj.foo(1l) # even though: def foo(self, n):
> 2

methods are called with one argument missing
the argument 'self' is added behind the scenes

the method can also be called from the class

the user must supply the instance on which it is called
MyClass.foo(obj, 1)
> 2
or just as well:

MyClass.foo(MyClass(), 1)
> 2

19

Mutable namespaces

Adding a method to a class

def fun(self, x):
return X

MyClass.fun = fun # bind function 'fun' to the name 'fun’
MyClass. dict .items()
> [('fun', <function fun at 0x2ac49af716e0>),]

MyClass().fun(1) # call the (now) method 'fun'
> 1
Adding a method to an instance only
def bar(x):
return x

obj = MyClass()

obj.bar = bar

obj. dict .items() # bar is bound only in the instance's namespace
> [('bar', <function bar at 0x2ac49af5c5f0>)]

20

Classes are callable

Recall how a' call 'method made a function callable
MyClass.<tab>
> MyClass. call
This class is callable

In fact, calling the class amounts to instantiating an instance of the class:
obj = MyClass()

Arguments to this call are passed onto the ' init ' method
obj = MyClass(”Jimmy”, 102)

class MyClass(object):
def 1init (self, name, age)
self.name = name
self.age = age

21

Callable objects

If all we need isthe' call '"method...

we can make our own callable instances!

class MyClass(object):
def call (self, *args):
return args

obj = MyClass()
A _call__ method is just like any other method
Except it is run 'directly’ on the object, just like a function call
obj (2, "jimmy")
> (2, '"jimmy')
Does this make 'obj' a function?
No, merely an object with the callable property of a function

obj
> <MyClass object at 0x2ac49af4ff10>

22

Waypoint

Metaprogramming

23

Motivating decorators

Suppose we want to add tracing information to a function:

def fun(s):
print "Entering function 'fun', argument 1is: %s" % s
Sw = S.sSwapcase()
print "Leaving function 'fun', result 1s: %s" % sw

return sw
This is very invasive...
fun("aB")

> Entering function 'fun', argument is: aB
> Leaving function 'fun', result is: Ab
> IAbI

24

A tracing decorator

A decorator replaces the function in the namespace
A new function object is bound to the old name

The new function wraps the original function
def trace(func):
def f(*args):
print "Entering function '%s', arguments are: %s" %
(func. name , args)
result = func(*args)

print "Leaving function '%s', result is: %s" %

(func. name , result)
return result
return f
@trace # invoking decorator
def fun(s):
return s.swapcase()
#fun = trace(fun) # result of invoking decorator

25

A synchronizing decorator

Python has a Global Interpreter Lock

Can only be held by one thread at any time

Decouple synchronization from the business logic:
lock = threading.Lock()

def synchronize(func):
def f(*args):
lock.acquire()
result = func(*args)
lock.release()
return result
return f

@synchronize

def withdraw(n):
balance = account.balance - n
account.balance = balance

26

A memoizing decorator

Suppose we have a long running function
We wish to cache the result of the function on a given input value

This decorator has to be an object (why?)

class memoize(object):
def init (self, func):
self.func = func
self.cache = {}

def call (self, *args):
try:
return self.cachel[args]
except KeyError:
self.cache[args] = self.func(*args)
return self.cachel[args]

@memoize
def fun(n):
return math.log(n**n)

27

Introducing metaclasses

Every object belongs to a class
including class objects
the class's class is called the metaclass

obj. ~_class . __class
instance class metaclass

The default metaclass is 'type’
obj. class . «class

> <type 'type'>
But then classes too can be instantiated?

28

How classes are instantiated

class MyClass(object):
class member = 1

def foo(self, n):
return n+self.class member

The 'class' keyword is seen
Assignments/declarations are collected in a namespace
The class objected is created, bound to the class name

Another way to accomplish the same thing:

def foo(self, n):
return n+self.class member

name = "MyClass”
bases = () # empty tuple defaults to 'object' as base class
namespace = {'foo': foo, 'class member': 1}

MyClass = type(name, bases, namespace)

29

<<objects>=>

\J :
instantiatesg

o O

object

<<meta-meta...>>

type

<<metaclasses>>

dict module

tuple set
list bool

int str

LR LR R R R e R e R R e]

1 Iljimmy.ll

[1, 2] True

derives

'

<<classes>>

<<jnstances>>

A printable metaclass

Suppose we want to add a method to all classes

We craft a metaclass
it derives from 'type’, not 'object’
we override the ' init_ ' method and set the method

class Printable(type):
def init (cls, name, bases, namespace):
super(Printable, cls). 1init (name, bases, namespace)

method to iterate over all objects in my namespace

and display them
def printme(self):
for (key, value) in self. dict .items():
print "%s: %s" % (key, value)

cls.printme = printme # set this name in the class namespace

31

A printable metaclass

Using the new metaclass amounts to setting' metaclass

class MyClass(object):
~_metaclass = Printable

def init (self, value):
self.value = value

Now instantiate an instance and call the method
MyClass(1l).printme()
> value: 1

The metaclass can be set for all classes in a module
by setting' metaclass ' at the top of the module

32

A tracing metaclass

Recall the 'trace' decorator

Suppose we want to decorate every method of a class with @trace...

class Tracable(type):
def init (cls, name, bases, namespace):
super(Tracable, cls). init (name, bases, namespace)
for (key, value) in cls. dict .items():
if isinstance(value, type(lambda x:x)):
setattr(cls, key, trace(value))

class MyClass(object):
__metaclass = Tracable

def fun(self, value):
return value

MyClass().fun(1)
> Entering function 'fun', arguments are: (<MyClass object at
Ox2ac49af996do>, 1)

> Leaving function 'fun', result is: 1
> 1 33

A4

instantiates

type

type MyBaseMetaclass MySubMetaclass
object MyClass MyBaseClass MySubClass
obj baseobj subobj

derives

Metaclass composability

A class can only have one metaclass
how can we compose them?

inheritance!

class Composed(Tracable, Printable):
pass

class MyClass(object):
__metaclass = Composed

def init (self, value):
self.value =1

obj = MyClass(1)

> Entering function ' init ', arguments are: (<MyClass object at
0x2ac49afa6350>, 1)
> Leaving function ' init ', result is: None

35

Metaclass composability

What about the method 'printme’ injected by Printable?

obj.printme()
> Entering function 'printme', arguments are: (<MyClass object at
0x2ac49at99690>,)

> value: 1
> Leaving function 'printme', result is: None

So in effect, 'printme' was injected before Tracable wrapped all
methods with @trace
what determines this?

the order of derivation

class Composed(Printable, Tracable):
pass

obj.printme()
> value: 1

36

